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ABSTRACT

The nonlinear flap-lag coupled oscillation of torsionally

rigid rotor blades in forward flight is examined using a set

of consistently derived equations by the asymptotic expansion

procedure of multiple time scales. The regions of stability and

limit cycle oscillation are presented. The roles of parametric

excitation, nonlinear oscillation,and forced excitation played

in the response of the blade are determined.
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I. Introduction

The problem of the coupling between nonlinear oscillation,

parametric excitation,and forced oscillation is of great interest

in rotor dynamics. The present paper will restrict con-

sideration to the flap-lag motion. Few authors have considered

the nonlinear oscillation of a torsionally rigid blade. Young

(Ref. 1) has used rough approximations to derive the solution

of a set of nonlinear equations. Hohenemser and Heaton (Ret.2) derived

the nonlinear equations of motion in forward flight approximately

and solved the equations by numerical integration. The present

author (Ref. 3) used the equations derived by Hohenemser and applied

the asymptotic expansion technique to establish the limit cycle

oscillation amplitude and clarified the role played by nonlinear

oscillation, parametric excitation, and forced oscillation of the

rotor blades. In the present paper, the nonlinear

motion of flap-lag in forward flight are carefully rederived,

which is extended from the linear flap-lag equations in hover

derived by Ormiston and Hodge (Ref. 4). A technique similar to

that of Ref. 3 is applied to treat these new equations. Extensive

results on the forced response, stability boundary, and limit

cycle amplitude will be presented.

II. Formulation

In deriving the equation of motion, we shall make the follow-

ing assumptions: (1) the pitch angle, 0, the static equilibrium

coning angle Bo , and the static equilibrium lag angle Co are small,

2 2 22
so that 82, 2o and Co can be neglected as compared to one; (2) the

effective angle of attack is small and the two-dimensional quasi-

All of the symbols used are defined in Appendices A and B.
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steady aerodynamic theory can be used; (3) the ratio of the

profile drag coefficient to the lift slope is small and can be

neglected compared with unity; and (4) nonlinear terms up to the third

order will be retained. However, since the aerodynamic damping is much

higher in flap than that in lag, the perturbed motion in lag is much

larger than that in flap; thus, it is expected that the nonlinear

terms of the perturbed lag motion C will be more important than the

perturbed flap motion S. It is also expected that the nonlinear terms

are more important in the lag equation than in the flap equation.* Thus,

the nonlinear terms such as aC, 2 8C 2 and their time derivatives
f~~~~ 2

will be retained in the flap equation while B2
, 2C, 2 8~ etc. will

be retained in the lag equations.

From the above assumptions, it has been shown (Appendix A)

that the equations of motion in flap and in lag are,respectively:

+I Duope + (|+Q*)t+Q~sE,-K1
L 8 4 ( 2 C)StC-13 An

+ a t38+3to 3)- t fit L 6-)-3 3s

4 8- 5[3A f*( t4 s-3s + (1)

4 e-

This is indicated by the results of ASRL 166-1 (Ref. 3).This is indicated by the results of ASRL 166-1 (Ref. 3).
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4~~~4

whr ~, ~ = Qt, ¥s th oc ume, s ph advanc

*~j48 ( A -2C)*U3- 8 ~ ~ 4 

(2)

8 g12 f- ( eA;4 z d +

where ( ) = d' = Qt, y is the Lock number, p is the advance

ratio and the rest of the parameters are defined in Eqs. (A.9),

(A.22), (A.23), and (A.24).

The critical condition of the system is determined by the

existence of a small amplitude undamped oscillation for the linearized

version of Eqs. (1) and (2). Namely,

~ ~ ·t, 0 +~ 52; ~ t 5s ~ - ff ~ o~~-Q~~~~-~~.So(3

~~;-+S?~~ -t2~~~(b ~~ 0
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Let

in (3), we have the characteristic equation for p

where i = 1. The critical condition corresponds to p = QF which

is called the flutter frequency. Substituting into (4) and using

subscript "c" to denote the critical condition for the parameter,

one obtains

4 3P -A te('+Jf4 )+- #sc(zc^Xc A& 4 (5)

[C C eC ¢ c~tgtcl (6)

If all the physical parameters such as QV?, Q, *'

and n, are given, one can determine the critical pitch angle,

say Oc from (5) and (6). It can be shown that for 8<8
c

all the

small amplitude motion will be damped and for 0>0 c there exists

a branch of solution of (3), which will grow exponentially.

Ormiston and Hodge,Ref. 4,have shown that when 'na, nr e, and

2Qu = 0, it is necessary to have 0< <1 for the existence of c
.

Indeed in this case, it can be shown that

I~~~~~~~~~~ (tc Ac) z A Qk X As) - ~~~~~~(7)

Q is the elastic coupling effect, no expression for it is derived
at present. It will be treated in a forthcoming report. It was
shown in Ref. 4 to have an important influence on flap-lag insta-
bility.
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We define the differential operatorsL and M, the functions

f's and h's, and various quantities 's, 8ij' Cij' N, P's and K's

in Appendix B. All these quantities are to be used in the follow-

ing sections for the perturbation solutions.

III. Perturbation Solution below the Critical Condition

If the angle of the pitch is less than 0 c' for a given set of

physical parameters, all the solution of (3) are damped. A per-

turbation solution of (1) and (2) can be established by assuming

(8)

Substituting (8) into (1) and (2), requiring all terms of the same

order in p satisfying (1) and (2) separately, we obtain

o ( u)

L (0,,,)- ,(, )

M (~.}, ;) - i~, (~',~)(
Q~~~~~~~~~~~i ~ ~ ~ ~ ~ ~ ~ ~ ~ 9

0 (I 2 )

L C f.,, = :,(,)+ '3 -u,- %' " i ',* '; ( '%'~;' )
(10)

M (t ,, ,,- = ,-(t, i) + f,3(~,~~,<;p,-, S.,~,,4~,'~

where L, M, f's and h's are defined by (B.1) through (B.17) in

Appendix B.

Since the homogeneous solutions in (9), (10), etc. are damped

(below critical condition), we only have to consider the particular
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solutions. Using (B.4) and (B.5), we may write (9) in the form

L , - e ? ; (11)

where P7 and P8 are defined in (B.34) and (B.35). ( )* denotes

the complex conjugate of the corresponding quantities. The par-

ticular solution for B1 and 1 is simply

--= C (12)

where $12 and ~12 are defined in (B.36). Substituting (12) into (10)

and using (B.5) through (B.10), we have

(t1,§^5 ~- Z)3 +E +3 -),0.

(13)

and the particular solution for 2 and C2 is

(ps ) = (g e6+ 0s~~t (v"") (14)

where P1 3 ',. '16' B25, ~25' B26' and C26 are defined in (B.41)

through (B.48) in which X0, 0, and T are set to 1.

By a similar procedure one can obtain the solutions for

higher order expansions.

IV. Perturbation Solution in the Neighborhood of the Critical

Condition

In the previous section, we only seek the particular solution
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of S and C. If the pitch angle is larger than 8 , at least one

branch of the homogeneous solution of

L(M S) =0

is undamped. This undamped solution must be included in the solu-

tion of l1, C1 etc. In the neighborhood of 8c, the value of 12'

C12' 825' etc. becomes very large, i.e.,the solution in (12) or

(14) etc. are large (see B.36 and B.45 through B.48), the expan-

sion in (8) will break down. Under these circumstances, we

shall establish a different expansion by perturbing the system

near the critical condition. Introduce a small parameter e and let

!

(15)

for the dependent variables and let

9 ~= +i ~ -·

\ ate at At sect £6224t t -- . (16)

3px~~C +,*Ala ua+> g 
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The subscript "c" refers to the value at the critical condition.

We also introduce different time scales.

•r~ ~_ ~ ~~-z O
n

I, 2L ~- (7
i - f m= . I L- (17)

then

.> -L .ar r

b X _ x,4 AS Os *..

For different values of QF' different order of magnitude of

parametric excitations and forcing functions, i.e., different order of

P', Pfl, phl, p h2 and p h2 , are permitted in the expansion series

of (15). We write

Xrot,) t $(To la)

L, a¥(,o, o9)

g t~~t,>) ~~~ Be X ^(te) ~~(18)

Assuming f[, h, f2 and h2 are functions at most of order one,

we expand p, ~ and in the following forms:

(19)
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The constraint in the choice of the value of the coefficients in

(19) is to make the expansion series (15) a periodic solution

in the fast time variable T0 . Since we shall only consider the

solution up to order £3/2, we may, in general, have only one of

the coefficients as nonzero. In particular, within the above

mentioned constraint, only the leading coefficient is chosen to

be nonzero.

Substituting (15) through (19) into (1) and (2), requiring

terms of the same order in £ satisfying (1) and (2) separately,

we will obtain the differential equations for the determination of B 1

1 etc. The equations can be expressed in the following form:

0 (c1 /2)

o~~~c )x

O.(£3/2)

we (L,'6 M, fJs a n 1's(re1b) throi, (2217) 20

0 (E)

MAJo(Coh) -rLr i

wT L, M, f' a h ar deie 2in(B E) t hroug (B7 Ine 
M~~~~~~K (K2)=. (od g,(Tos0) -+' A 5ko,GiWs)4,31;sW,,

where L, M, f's and h's are defined in (B.1) through (B.17). In
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this section, the parameters used in L, M and N [(B.1), (B.2) and

(B.18)] are referred to the value at the critical conditions.

The homogeneous solution of (20) is the same as (3). At the

critical condition, there is only one branch of the solution

which is undamped. Therefore, we may just include that particular

branch in the solution of 1 and and

(~~~~ i'02A 4() ;f b T(h e

= 2 (4)e~~F~%p~j? ( 6eaC1

where Dij and ~ij are defined in (B.30), (B.31), (B.36), (B.47)

and (B.48). In (23), the P's, He's and i's are so chosen such

that there are no secular terms in 6's and O's, i.e., the solu-

tions are periodic in the variable T
0
. A substitution of (23)

into (22) yields
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M~~~P1 +B 5 ~ AA7 ~~
L(FUJE;5)~~~6 =TP5 trieF .ew ~7)t A+PsA e] eZFT°

+P [ X; fir + P2s PAA lei 'P273 P-QT

+2-t e Vet-F)%..,p fjse(Z -JF)ro

*2 ?, A -2o -)To, o Ae ( F ) r

' &5 p% e3
r °

- ~'~ %~ et
:

° * .'
(24)

tMl aim- P9 Pt64y~& et 
PIa A% ec-4F A2 _& t(2 -Pt

4 MyP,,A*&C1wJI4O T Z

-i, ,t,,gp,> I CL2sypro +,t,1 ' A eLWLFI)tO

4 A)Pe 3 t7+° ~ + ..

In the right hand side of (24), many terms have the same

frequencies as OF' i.e., the solution of 3 , 3 will have secular

terms, i.e., T3 , 3Te QF 0, unless the right hand side is

orthogonal to the solution of the adjoint operator

of L and M (Ref. 3), i.e.

[v L(mA, -5) + M (0sK14 eain acro =~ ° (25)

in which v is defined in (B.63). Equation (25) will provide us

the equation for A which can be functions of T2 , T4 ,... etc.

Consider the following cases:

(1) Hovering P(=pl=P2)=. In this case, all the forcing

functions and the parametric excitations (terms with coefficient



-12-

l1 or P2 in (20) - (25)] are zero. To suppress the secular

terms of 83 and C3' (25) is equivalent to requiring

Mr(9,drt &<M +3ts^^) 0--t-94 A +Aw o

or

(26)

where v, K2 , K3 are defined in (B.63) through (B.65). Equation

(26) is in the same form as that of Eq. (49) in Reference 3. It

can be solved easily. The solution is

A eeL (27)

where ( ) and ( ) are used to denote the real and the imaginary part,

RKU OZ I ~~~~(28)

and p0 and 0 are the values of p and J at T2=0. The conclusions

concerning the stability of the solution is the same as that in

Sec. IVa of Ref. 3; namely, (a) if2 K 2R>0 (above critical condition)2 2R

and K3R>0, the blade is unstable; (b) if 82K2R<0 (below critical

condition) and K3R<0 the blade is stable; (c) if 0 2K2R>0 and

K3R<0, there exists a limit cycle oscillation with amplitude being

l Al~i90 = (- s~g 4 (29)( Kwi
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(d) if 02K2R<0 and K 3R>0, there exists an unstable limit cycle.

The blade is stable if the disturbance in JAl is smaller than

that in (29), and the blade becomes unstable if the disturbance in JAI

is larger than that in (29). Let 02=1, by (15), (16) and (22),

the amplitude of the blade motion is (8-0c)/2A.c

It should be noted that K2R is positive for the present

problem. Therefore, the origin (A0ZO) is unstable above the

critical condition (02>0), and is stable below the critical

conditions (02<0).

(2) i0, QF=l/2+cv, where v is of order one or smaller.

In this case S2 3 and C23 in the second equation of (23) can be

very large or even singular, i.e., the solution of B2 and C2 will

have secular terms. This is because the nonlinear coupling of

the first order homogeneous solution, E1 and C1' with the forced

response due to fl and h1 and its coupling with the parametric

excitation are in resonance with the system. The difficulty can

be avoided by requiring

/kC~,)~~~~~~~~ ~ 0(30a)

and the other coefficients in (19) may be taken as

(30b)

i.e.

JA- $P%
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In (24), terms proportional to ei FT0 and ei(l QF)TO will cause

the secular terms in 83 and T3 . To suppress it, it is required

that (25) be satisfied which is equivalent to requiring

\ sP, Tj + Si 3 A4/A.La*q eZ;)t Up x '

or

(31)'

IVTchanging variable by A=Ael 2, it becomes

Oa L_,o 2 -s A- 4C

~bra,=(r')A z~* k (31)

where K's are defined in (B.65). Equation (31) is in the same

form as (10) of Ref. 3. Thus its behavior can be investigated

in the same manner, that is, if

A>z <C i VK2 K+i1/j 51 (32)

the origin, IAI=O is a focal point; if

--KzL 6, < I < (33)

the origin is a node; if

I z51 < pL (34)

the origin is a saddle point. Since (31) is homogeneous, if

kl t\*QL e b p^ \Hr\ _ (H( V 7Z j < 0

the solution near the origin (A=O) is stable. In this case, if K3 R<O,
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there will be no large amplitude flutter response, i.e. the blade

will simply respond to the forcing function (no flutter mode) due

to advancing flight. If 02K2RK3R > 0 no close trajectory for A can

be formed on the phase plane. In this case, if K3 R<0 (02K 2 R<0),

the solution is expected to converge to one of the singular points

of (31); if K3R>0 (0 2 K2 R>O), the solution is unstable. If

82K2RK3R<0, a closed trajectory for A can exist on the phase

plane. The maximum distance of the trajectory from the origin

is bounded by

qloiza ( Spit A K6 SZ Z )c | | < W- + 1 X (35)

In this case, it is expected that if K3 R<0 (0 2 K2 R>0), the closed

trajectory is stable and if K3 R>0 (82K2 R<O), it is unstable.

Let p2=l, i.e. c=p, 02=(8-8c)/p and rT2=pip. By (15), (23)

and (31), the amplitude of the blade motion will be p1/2A(e-6c/p, p~).

For fixed (0-0 )/p and as p increases, the amplitude will grow asc .

p1/2 and will vary more rapidly with time scale ~l/p. A will tend
____c 2R 1l/2

to p K3R as (e-c)/p+ , if a2 K2 R>0 and K3 R<0.
3Rj 

(3) p40, QF=l+ev, where v is of order one or smaller. In

this case, 81 2 and C12 in the first equation (23) can be very large

or even singular, i.e., the solution of Al and Cl has secular

terms in T
O
. This is because the forcing function fl and h 1 have

almost the same frequency as the flutter frequency. This diffi-

culty can be avoided by requiring both fl and h1 to be small;

~~~~~namely, ~=s ~ or
namely,,dP=F or
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(36a)

in (19). This is a reasonable assumption because both fl and h

are proportional to the pitch angle which are indeed relatively

small. We may take the other coefficients in (19) as

(36b}

i.e.

a' = e.

fg '=I

(In reference 3, p was taken to be p3c 3 / 2 , A to be one. The

present expansion is valid for a larger range of p.)

In (24), the terms proportional to e-i'FTO0, e±iTO, e-± (2-F)TO

and e-i (2F -1)To will cause the secular solution for 3 and 3'

Equation (25), in this case, is equivalent to requiring

¢~~ [Pf Ark7 -(-P4t h A wp 1 'P2 Pqg 9I

31(?l Ant g +M <27)e +Pt 923¢2 i]

a2. b~z -( DP+ )A+p1 pM)PAO AAeti,
pt kr].= °

or

aA = (a z5 +p>} mu,) ,A, + g KqIA 2I(H-o AAFt (37)

-+ Ka, At"- A * -A. , K^, A' et L I) -C7 (37)

19t%=:.

-=w = _ P=_O
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Equation (37) is quite complicated. The complex amplitude

"A" depends on Pl' 82,and v which are coefficients in the expansion

of the parameters. Their physical meaning is not quite obvious

because C itself is just a conveniently chosen small parameter.

To see the effects of pitch angle, advance ratio and the value

of the flutter frequency, it is better to rewrite (37) in terms of

physically more meaningful quantities by defining:

A-£ Aea =E7 A e( ) (38)

where 21AI is the amplitude of the first order solution of the

lag motion in radians. Substituting (38) into (37), and using

(16) - (19), we have

HAtK. 4,Ai-0t'J .,, (39)

The third bracket is the contribution due to the nonlinear

coupling of the flutter mode and the parametric excitation and

-2-
the term K3 A A* is from the nonlinear coupling of the flutter

mode. If the nonlinear terms are neglected, we obtain the result

for the linearized equations of (1) and (2), i.e.

Mky~ +Ad1~~. (40)

JA 19-> ' (l , ) R ~sn^pe 2
The homogeneous solution of (40) is in the form Ae 1
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Aid=~ ~2g( M-8 g Be t I K\-Z(8&~ Q_* gDI 

Therefore, the linearized solution, i.e., the origin (A=0), is

unstable if Re(X1 ) or Re(X2)>0. Its stability boundary is given

by

ktC ) 0 (41)

Since (39) is inhomogeneous, regardless of the range of the parameters,

the solution for A will not be zero, i.e., the flutter mode is

always excited.

To examine the behavior of a nonlinear solution, one must use the

full equation (39) or (37) to investigate the characteristic of its

singular points. One can then estimate its behavior by the method

used in Ref. 3. It can be shown that if p is sufficiently small

and (8-80c)/p2/3 is of order one or larger, it reduces to (73) ofc

reference 3, i.e., PAIwP 1 / 3 for small value of i and the time

scale for the growth is proportional to 1/p2/3 For a larger value

of pi, i.e., (8-8c)/pl/2 is of order one, IAI will be of orderc

p and the time scale for growth is proportional to 1/p.

(4) pk0, QF=2 +cv. In this case, the forcing functions f2

and h2 and the nonlinear coupling of the forced response due to

fl and hl, and its coupling with the parametric excitation will

cause secular terms for 2 and ~2' i.e. B25 and 25 can be large

or even singular in the second equation of (23). The difficulty
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is avoided by setting

(42a)

The other parameters may be taken as

2 -- 0-(42b)

We have

(43)

In the right hand side of (24), only terms proportional to eiQFT0

and e2 iTO will cause secular solution of 3 and 3 To suppress

the secular terms, (25) is equivalent to requiring

r- P5A 4(O ZP3+ ', 7 ) k 4-P 4A % , 9 e

4 1 agog~ (6bR+g1 ) A +7X¢P X = °
or

If] =(2.X h)^*3 + Axh gz -t4

Transforming back to the physically meaningful quantities by

_ Sz_ -: ^ ~ z AeLv VT2 A e'(-2

we have

wtA A k 12.-t 5 -tL ^ (45)
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The behavior of A near the origin (A=0) depends only on the sign

of Re[K2 (O-Sc)+11p2K6] , i.e., stable if it is negative and unstable

if it is positive. One can examine the general behavior of A by

the method used in Sec. IV of Ref. 3. The results are the following:

Let

If 2RK3R>0 , there exists no closed trajectory for A in the phase

plane. Since the sign of 3JAJ/ 2 is the same as K3R for large

values of jAl. If K3 R<0 (6 2R<0 ), the solution will converge to

the singular points of (44). If K3 R>0 (6 2R>0 ), the solution is

unstable. If 62RK3R<0, there exists no trajectory for A on the

phase plane in the region jIT 2 <_62R/2K3R. However, in this case,

it can be shown that the maximum value of the closed trajectory

from the origin is bounded by

iC ~~~~~~~~~~2.

v (_ iR $ t A) $ \^|1RLJ < <° (46)

where p0 (>O) and p1(<0) are the largest and the smallest real

roots of

\ hLX ( s t ) tM| l °(47)

It is expected that if K3 R<0 (6R>0), the solution converges to

the closed trajectory and vice versa.
e-e

For fixed e-e c and sufficiently small p, say - -0(1), or

C>>l, equation (45) can be solved similar to (26), with terms

proportional to p2 being neglected. In this case, A is of
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1/2
order (e-e )or P 1/2 which is the same result as obtained in

Ref. 3. For larger valueof p, say (0-e c)/P-0(l) the full

equation (45), must be considered. The solution of A is of

order p.

Since (45) is inhomogeneous, A will not be zero, i.e., t

flutter mode will always be excited.

(5) pi0, QF=l/2+ev,l+cv or 2+6v. In this case, there 

no secular term for the solution of (1' ~1) and (B2' 2)'

Therefore, we may take

Xc> =o -J

ae I= = 1 =T2 = °

I

A = hg 7= Z-n= frx 

the

is

(48)

(49)

To suppress the secular terms of 3 and 3, there are three cases

(a) 2F=l/3+£v. In (24), the terms proportional to e-iFTO0

and e±(l- 2 F)T 0 will cause secular terms. Therefore, (25) is

equivalent to requiring

or AA P +

et p *P A FFAP4 A A AzoA* e 3 0 C o

or

(50)

i.e.

>A ~~ _ K--F 3AA*,7te3j or
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Near the origin (A=O), the solution is

'7 unstable

Kt t ; r + l < O stable (51)

The general behavior can be examined by the method used in

Ref. 3. Let

S = ZZ tPl% iA(RF -) (52)

If 6 RK3R>0, there exists no closed trajectory for A in the phase

plane. If 6 RK3R<0, the maximum distance of the closed trajectory

from the origin is bounded by

fle>4¢tH ~ P2 ,K71 _ 9V K-r' <1

2 K, -K 1 HA 

(53)

(b) QF=3 +cv. In (24), the terms proportional to e+iQFT0

and e3T 0 will cause secular terms. Therefore (25) is equivalent

to requiring

ff~ ~ ~~- Ao a^( 3 l91 + PS 2t;v A P 

n PL( +)A A 4-P4 F A- 4?PI = A

or

ate = (t; )A*t P ) A t A3 A As + eA, rK(54)
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Equation (54) is similar to (45), it can be examined accordingly.

(c) Others: In (24), only the terms proportional to

ei FT 0 will cause secular terms. Therefore, (25) is equivalent

to requiring

arc = (saw +P1 46) A + at 8 Rt(55)

Equation (48) can be solved in a manner similar to that used

for (26); therefore, the conclusions in Sec. IV.1 hold for (55) with

K2 8 being replaced by K282 + P2K6 .

V. Uniformly Valid Expansion

The solutions given in Secs. III and IV can be combined to

establish a single expansion which is valid for small advance

ratios p and all range of pitch angles e up to a small neighborhood

above the critical conditions. We shall first show that there exists

a range of 0 where the expansion given in both Secs. III and IV are

valid, i.e., to establish the matching of the solutions. Then

using a technique similar to the one used in singular perturbation

theory (Refs. 5,6), a uniformly valid expansion can be constructed.

Let us use subscripts "b" and "n" for the solution in

Secs. III and IV to denote respectively the asymptotic expansion

for e below and near the critical pitch angle 0
c

i.e.

(56)

( 5 )" (in th (Tx )n~~Y
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the relation between C and p will depend on the cases (see Sec. IV)

considered. Let £ be a small parameter such that

0< E< (57)

We shall show that for e<ec and
c

(58)

both expansions in (56) match, that is,

( L L75)b (59)

as £,Z+0 with T2 being fixed and a=l/2, 1,... Then the uniformly

valid expansion is simply

(60)

The last term of (60) is the common part in the expan-

sions ()n and ()b

We shall consider the four cases of Sec. IV separately.

(1) Hovering, p=0. In this case

and ()n is defined in Sec. IV.l, and is proportional to A which

is the solution of (26). Since K2 82 is linearly proportional to8e2
8-0c1

(= e =-T) (see B.59, B.29, B.39, 16 and A.24),

its real part is a large negative quantity. The solution of (26)

can be approximately expressed in the form



(61)

where A is a constant. A is exponentially decaying, so is ( )n

i.e., (59) is automatically satisfied. We should point out that for:

the conditionally unstable situation of Sec.IV.l.d the approximate

solution (61) may be invalid for a sufficiently large initial dis-

turbance. However, this situation may be avoided by having sufficiently

small E, thus seriously limiting the range of validity of the uniformly

valid expansion.

(2) QF=l+ev, (Sec. IV.2). The expansion ()n is in the

form similar (up to the order considered) to that of the previous

case except that A is now governed by (37). In (37), within the

range given by (58) and P of order one or smaller, the real
I

part of K2 02 (~-1/~) is a large negative quantity; the solution for

A can be approximately expressed in the form

A e.s2_K _e'CA -A ¢1k (62)

2 21P K3 K41
[This is valid only if 3<1.

I i (QF-1) +K 2 (0-8) I
where A0 is a constant to be determined from initial conditions.

The expansion near the critical value 6c can be written as

()2 I I() ;ii(e a)+i-) (' )e( F t )34"s~) (e4-ii)1'

He~~~~~~~~~~~~~~~~~~~~~~~~V.

I i'l9-92)+t(QF-')) (fi5L) t (a )e -~

4 0 (P ) } E(63)

t~~~~~~~~~~ l
A° depends on the initial conditions.M

A0 depends on the initial conditions.
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We shall examine the expression (C)b by expressing

I R -JF 1 t)

where v is a constant of order 1. Expanding the parameter in the

form of (16), we have, (B.18, B.19 and B.36)

D ( i ) = (s>+i -;" + Qri:ci)L i 9 -P. 4 p-1+0g) (64)

U + L ' 'Y \ 

I 1k -??(PS ) -

I .DSl? 4 - - Ld 4W

=From (14), (B.47), (B.48) lt t )

From (14), (B.47), (B.48)

( X5 :b
3S25 6 6 l

t~~~~ ID1-t(;~~t)f12312-b8 (; /

( -

- sX~~A)+ sK(-3(5 ~ o½ (t )

/(-2;L(P32 •11 *za-2 P° y) 1 s -8

i (2$o- r) ,_0i*Z r^>

I= K 4 - |2 (PIL
1(0F -1) 4 2 (8 -0') 52L Jn t

Then the expansion ()b can be written as

(66)

(67)

(11L2 = N

t o( £- )

0(£1)
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t ~ ~ s -OI(QFI) .1(SCl l , we * Oi\)K(-s~) V 
4 A o{t ~) (6 8)

Comparing (63) and (68), evidently the matching requirement (59)

is satisfied. The common parts of the two expansions within the

order of approximation in the expansion are the same as in (68).

Therefore, we have the uniformly valid expansion

where

~,(70)

( AIR) [ t g (+R) (71)

and ~25' T25' ~26 and T26 are defined in the same way as 625...

etc. in (B.47) and (B.48), except that $12 and 12 is replaced

by 612 and C12 and o o = -" .

(3) QF=2+cv. Similar to the previous subsection, it can

be shown that 3 and C can be expressed in the same form as (69)

in which

(Re ) | (tub + is) JU 4 §X6 + (72)

where
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(~~ rW [ oe>Nob )3 (pow)

with 0=2--=Z=f=l in (B.41)-(B.44).

For the other cases, the expansion near the critical con-

ditions matches that below the critical condition, i.e., the

uniformly valid expansion is of the same form as that in Sec. IV

except that when evaluating 12, C12' B25' C25' B26 ands2 6'

the parameters in the matrix N (B.18) are referred to their value

at the corresponding pitch angle 0, rather than using the value

at c as done in Sec. IV.c

VI. Conclusions and Numerical Results

To summarize the results for the pitch angle 0 in the neighbor-

hood of 0 :c

(1) The value of K3R, defined in (B.65), characterizes the

behavior of the blade at large amplitude motion because the sign

of DIAI is the same as that of K3R when JAI is sufficiently
3T2

large. Therefore, if K3R has large positive value, the nonlinear

effect is strongly destabilizing and vice versa. It is a very

undesirable situation to have the blade with K3 R as positive,

because instability can always be excited if the disturbance is

sufficiently large. In practice, large disturbancesare likely

to occur due to gust or maneuver. The value of K3R is independent
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of the advance ratio; however, it depends on 0, Q8 , Q%, g , g 

pcin a complicated way. In the two cases considered inp.c.

Figs. (2) and (3), when Q>1+Q2, K 3 is positive or has a very
' ~ ~ ' K3R

small negative value, i.e., nonlinear effect is destabilizing or

2 2
is very weak. In the region Q <1+ K3R is generally negative,

2 2
and has a larger value than that for 2 > 1 + Q, i.e., the nonlinear

effect is stabilizing and is stronger.

(2) When flutter occurs, the amplitude of lag motion is

much larger than that of flap. This is due to the fact that the

total damping in lag is much smaller than that in flap. The ratio

of the amplitudes is

where u is defined in (B.20) and usually has a value of O.lto 0.2.

(3) In hovering, if e>0c and K3R<0 , the limit cycle ampli-

tude is

for lag motion and

Alit [L
for flap motion.

The following are the cases for e near 8c in forward flight.

The value of QF has strong effect on the behavior of blade due to

periodic forcing function and the periodic parametric excitation.
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(4) If QF'1/2, the amplitude of the flutter mode is governed

by (31). By taking H2=1, the amplitude of the lag motion is

W1/2A(T2 ). In other words, when flutter occurs, the lag motion

grows as 1/2 The time scale T2 for A is pi, i.e., A varies

more rapidly in the time scale V (~l/p) for higher p. The

stability near the origin [A=0] is governed by the sign of

){ @ ["tR(9tic)+l Rig-l H2(9-ECQF- 7- (74a)

or in general, the stability of the singular points of (31)

is governed by the sign of

4 = t ( i2K 1 1 il - 4 ) ~~~~(74b)

where

YL= be tZ ta 01o0 AO (F 

y -2, (75a)

in which A=A is a singular point of (31). (Note A =0 is a
O O

singular point). If K of (74a) is less than zero, the origin is

stable and if K3R is also less than zero, since (31) is homo-

geneous, the flutter mode is unlikely to be excited.

(5) If QF-1, the flutter amplitude A is governed by (37) or

(39). For small value of pi, (small as compared to -e c), i.e. p1=E

or p=E3 / 2 with e2 being of order one, (if p<0(E3/2) for e-8c=0(E)

forward flight will have little effect on the flutter of the blade),

the lag amplitude is

a % t34 ( V 1.
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i.e., the lag motion grows as p1/3 and the length of time for A

to grow is proportional to 1/2/3. For larger values of p (large

as compared to -e c), i.e., pl=l or p=c1/2 with 02 being of order

one or smaller, the lag amplitude becomes

i.e., the lag motion grows as p and A varies more rapidly in the

time t (-1/p2 ) for higher p. The origin (A=O) on the phase plane

is no longer a singular point since (39) is inhomogeneous. There-

fore, depending on the distance from the singular point to the

origin, the stability prediction by the linearized theory such

as (41) may not be meaningful. Let A=Ao be a singular point of

(39), then the stability of the singular depends on the sign of

K [defined in (74b)] where

i2- OZF-c+i2-l* ki, thu Ao 8(2NN Kjoho
(75b)

p5- q +)bA K 1 A 9 K3Ao

Since (39) is inhomogeneous, ATo0, i.e., the flutter mode is

always excited.

(6) If QF-2, the flutter amplitude is governed by (44).

For small values of ,i.e., p=E 
1
/
2
or p=E with 02 being of

order one, the lag amplitude is

FHa MWO) = P ^L (kt)
large , i~e. or ~1/2

For large p, i.e., 1 l=l or p= 1 / 2 with 02 being of order one,

the lag amplitude is

A h (T.) =v A 
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The stability of the singular point depends on the sign of K

[defined in (74b)] in which

$;2-~~~ K;9c *^+ i t011-2) -+ K33-0 +

where A=A° is a singular point of (45). Since A =0 because (45)

is homogeneous, the flutter mode is always excited.

(7) If QF-1l/3 or 3, the flutter amplitude is governed by (50),

or (54). Taking 1=l, i.e., p= 1 2 , the lag amplitude is

The stability equation for the si.ngular point is also (74b) in

which

'2 -w (75c)

Go = £3o AD t KP7A 6

for F-1/3=0(C) and Ao e-e VT2 is a singular point of (50),
F ~~~~0

: K 2 (& -c)4Fb 4 L (YiT t ;& £ K A
~.~~~~~~~~~ ~(75d)

for QF=3=0(E) and AJe-i' 2 is a singular point of (54). In the

latter case, (54) is inhomogeneous, the flutter mode will be

excited.

(8) Others. The amplitude equation (55) is similar to that

of hovering. Therefore, the conclusion (3) also holds in this case

if K2R(0-0 c ) is replaced by K2R(0-0c)+26R.ifK2R c 2R c K6R-
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(9) When evaluating K6 according to (B.65), if the quadratic

terms in $1 2 and C12 are neglected, and in (75) Ao (or Ao) are set

to zero, K=0 of (74) gives the stability boundary of the linearized

solution of (1) and (2).

(10) If K3 R<0, QF is not near one, two,or three and if the

blade is operated under the condition K<0, the flutter mode will

not be excited. Therefore, in practical design, QF-i, 2,or 3

should be avoided.

(11) The amplitude of the blade motion is of order clAI,

how E relates to the advance ratio p depends on the value of QF'

In other words, for the same value of i, the magnitude of the

response can be of different order. In particular, if QF=1, 2,or

3, the flutter mode is always excited; one cannot just from the

observation of the motion of the blade conclude whether the

blade is in the region of stability or instability. Because the

motion cannot simply be the forced response, for different value

QF, the response is magnified to different magnitudes.

Numerical results are presented in the figures. The

induced flow is approximated by

where a is the solidity ratio (Ref. 4). Throughout the computation,

the following parameters are used,

cC-or ol
&aj - 1

7: 1~ -
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For practical interest, we shall only compute the cases l+Q21.1

and Q 21.

In Figures 2 and 3, the locus of the critical conditions for

various 8c are presented; y=5 in Fig. 2 and y=10 in Fig. 3. These

loci are similar to that of Fig. 4 of reference 4. The region

within the locus is unstable according to linear aeroelasticity

theory. For y=10, such regions are much larger than that for y = 5

for the same 8c The numbers given on this locus are the values

IK2R/K3RI / for the corresponding parameters at 0=6c The solid

line is a portion of the locus where K3 R<0 and the dotted line is

K3R>0 That is, over the solid line portion of the locus, there

exists a stable limit cycle of amplitude 2(0-ec) /2 K2 R/K3 RI 1/2

for lag motion and 2 (0-0c) l/2 1K2 R/K3 Rl /2Jul for the flap when >0c

Jul is usually 0.1~0.2 because of low aerodynamic damping in lag.

The blade is unconditionally stable if 0<0 c Over the dotted por-

tion of the locus, the blade is uhconditionally unstable if 0>0c and
c

conditionally stable if 0<0 c' i.e., if the disturbance in IAI is

smaller than IK2R/K3 R l /2 , it will die out and if it is larger

than IK2R/K 3Rl / 2 , it will grow. In these two cases, the limit

cycle amplitude can be quite large for 0>0 c' because IK2R/K3 RIa

is quite large, i.e., the nonlinear effect is weak. For such a

blade, it is not desirable to operate above the critical condition.

Figures 4 and 5 are the lag response of the blade in hovering

for a given initial disturbance, obtained by

method of numerical integration. In both cases, 1+q2=1.09544,

y=5, 8=0.3 and Oc=0.25. Q=1.0017 for Fig. 4 and Q0=1.19747 for
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Fig. 5, while the numerical values for K 3R are -0.0074 and 0.001

respectively for both cases. It is clear that the motion in Fig. 4

approaches a limit cycle oscillation while the amplitude in Fig. 5

grows steadily.

The case considered in Fig. 4 has a flutter frequency QF=1.0 0 4 1 8 .

It is expected that A is to be governed by (37). In this case,

t.S= o. .o11'18 + O. ol0° 6 1

K4 'A~~~~~~~~~~~4

= -O. 5O'T"t + O.0 o0 '
tx, -.-6. o (I~' - o. oo -r~C i 
kiz- - UOG6l9+ -O0.0 77a 0

X q _ .1 + ; at000. 1 o 
to = .-o G o 8"o 6 o. oo o(,,2 (

)&~, = o.oo ,Itz + O.oo~'~t';
d--1X,- = dol ," 4 d. 0o7,(,7. 

.9.rrI =.oo q-8

The time variation of IAI are plotted in Fig. 6. As predicted

in Sec. IV.2, when QFZl, the amplitude of the response is of

P 1 / 3 for (e-0c)/ I
2
/ 3 of order 1 and the time scale is proportionalc

to 1/p2/ 3 . Figures 7 and 8 are the lag responses of the blade

obtained by numerical integration having the same physical parame-

ters as that of Fig. 6. p=0.03 for Fig. 7 and p=0.04 for Fig. 8.

(-0 c)/ / 3 are held to be one. The lag motion is normalizedc

by dividing by p/ 3 , and ~ is normalized by multiplying by p2 / 3

It can be seen that the amplitudes of the two curves are very

similar in the time scale T 2=p 2/3p.
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ApDpendix A. Derivation of Flap-Lag Equations

In deriving the equations of motion of the blade in flap-lag,

B, C,and 0 are used for flap, lag,and pitch angle respectively. ( )

denotes differentiation with respect to * and V=Qt with Q being the

rotating speed of the shaft itself. Two coordinate systems are

used, namely, (x,y,z) rotating with the blade about the shaft

and (X,Y,Z) rigidly attached to the blade. The base vectors

of the two coordinate systems are related by (Fig. 1):

(A-1)
- (%J = CSr T - SL~ k

i = 5^ C * bo W S^t T oDczz, K

Let the distance of a point on the blade from its support be x,

or RE where R is the length of the blade. The position vector,

the velocity, and acceleration of the point can be written, as

r~gt(s~t ;^@L (A-2)

zf = 2 k t [_ W ;> t + tt95)c@3tp iX (A-3)

(A-4)

Let m be the mass per unit length, then the inertia moment about

the z-axis (the hub) is
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I

I T L i ( -4 1 AS( 4 C ( 

4191Lh (4);t 

where

(A-6)

The flow velocity relative to the blade is

~~~ - is ~~~~~~~ (A-7)

where VIND is the induced velocity. To evaluate lift and drag,

it is more convenient to express VA in terms of (X,Y,Z)-

coordinates, which move together with the blades, i.e.

VA - X + V\ *yk (A-8)

It is clear that V is the velocity component in the axial direction
X

along the blade, while V and Vz are in the cross section of the blade.yz

V ui n Al - fint(A-9)

using (A-l) we find

Vr - -35K~ ¢ r W)5t 4 4\" (X-C CoCt]

+ X Ap ( l O c ) + a (A-10)

Ve- QRt+ |Ot jc Ad.4~.X ( 4 ) An 9I - m('t -J

+t -&(()'' 3o6 



We shall assume that quasi-steady two-dimensional aerodynamic

theory holds for each cross section, i.e., the aerodynamic load

vector can be written as

LA = n P,,tLcIVTI ; N | t _ D0 VT ) (A-11)

where PA is the air density, "a" lift slope, c chord length, Cd
0

profile drag coefficient

=Vy 'T + ig(A-12)

aeff is the effective angle of attack, i.e., (Fig. 1.C):

Beef f \4 V (A-13)

~ v¥
and N is a unit vector normal to VT and in the plane of the blade

cross section defined by

-= ~ i IV~rl (A-15)
YT~VY

If Vy>0, i.e., the flow is from the trailing edge to the leading

edge, this is called reversed flow. In our present
C

consideration, we assume that Vy<0, and ae2 1, do<<l. A
y eff<< 

substitution of (A-12) through (A-15) into (A-11) yields

L-,A 9(iA t M8A5( )A 1 (-16

where
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~ z - 1jV! + Cd | 7 V ]

-t IVY I vy] CIA-

( )A_' 4 5

The aerodynamic moment at the hub (z-axis) is

BRA = | - e Lt Rde (A-18)

The equations of motion of the blade are

(22 tuba) (A-l9)

in flap and

HOT4 EA) H 055 +~ef5-pcC=o (A-20)

in lag, where Bpc is the preconing angle, and w , W
C
are the

bending frequencies in the flap and in the lag direction, w, is

due to the elastic coupling. (Note that, depending on the con-

struction of the blade, , A , wdd can be a function of the

pitch angle). In (A-19) and (A-20), it can be shown that by

2 Cdneglecting small terms, such as aeff' o compared to one,
a
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4 (1*4 C4s> c

-(tA C O (,+s ) *F; 1(R ) c- c '- 1D)~:~.,L..~~) (I- ),S"-W, ~_+ ~ip.-.

. [~.e c,*~+ ~~ ~:,-~ ~c.~,.a)+>-5-~ '. .
-- Uc e)S4 fib §0(+)(* 

+ 3 "99($<t;F2(q+-5) $(><)Pj
(A-21)

BMG+[Al +po(W+ PA+C](I+ cos?&

A'~-- C0A9

-t L g~ -, I ^& , co o(*g) A-§+2 lw (P+K) - a ] L-0

- [c{O (44) (I+t )4 AA3 (+;)

-iA w(J4)-(O§)eA+ z A - '

- 'AP )+ e' 4 + ) +*) + 2 P'2i4va(C4Jj

= I._

is the Lock number

where

(Mst~~~~~~- \A 1. I

. St, I &%�

(1-4 I -t LIA -K=l ( + " ) � 4�4)

4 rIrt I

- [A "^ cI+, ~* ~ c A *(t-)]
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A= oX4-d
eB=4S Az t'~ d(A-22)

C4. An dt

To further simplify (A-19) and (A-20), we shall assume that

elastic coupling wB <0(8), the pitch angle 0, the static equilibrium

flap angle Bot and the static equilibrium lag angle 0 are small,

so that 2, B2 and 0 can be neglected as compared to 1. The

quantities o 0 and C0 satisfy

+ 4 + (D -A)S(
(A-23)

We shall define the following non-dimensional parameters
x

.z >, A /SL

Y

'1;' - 'L.a >Z L ( otA-24)

-. g 2 - oA)



Substituting (A-23) into (A-19) and (A-20), replacing B by

8+a0 and c by C+C0, i.e. using B, C to denote the perturbed

motion flap and lag, respectively, and retaining only proper non-

linear terms we obtain Eqs. (1) and (2).
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Appendix B. Definition of Various Functions and Quantities

~~s'- Q1)pW (B-i)

(~,,~_ ~~e~, .. r ( -, t f . 1(B3

(B-3)'

{&(+}8 -= 3 (3 cdt* )5+'A'4 (48-ic)@ c&P4' (B-4)

4;t*,) _ {|t+}9)/(B-4)

IR3= -3 /ot (B-5)'

1+ ~ ~ - J ;(B-6)

-42· (A,.) =~te(B-6)'

(B-9)

-t (C (B-1)
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(B-12)

(B-13)

(B-14)

(B-15)

+ r,
(B-16)_ i, ( I zLt Sal ->2br -ap 3Pr.

-7P2 BrO '.~brO-I2
PA~r o -abr 57

(B- 17)

+ Y c It o.b 

(,9) -
/V (B-18)

LiY -Q

45(ti p5)-8 3&5 (6-3 -4)ar

i t; ,5,=at ¢e2)MXA0F 3tO 3S
+ttt23o§§-95>]t}

+1PJ';7S) alm .. 5 I.., 89 Ie 1^ I '

{a(I4IVql~l =2j%+ 81 We(FoZ')F s >;I )

4 '§r,'t - e alx- aI +1
Y. Via

-Osz %ToC

{i(*}t')~ = t% -2(e °)_ + 9 0Js++2g~. op Z4 }
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DI (P (S+ - e+L rx)

1*- =. cc TCex CoAjotie of Lt

IL- F ( a )F

(B-19)

(B-20)

(B-21)

It- -F 7- LA"
(B-22)

Otz= 2L.Qj LtI -

d3o = -,z LI' (U*-

(Co .- -VL

2 Qz (A t

T, = - (<5& N)

F21-= - (-aLF -+ :Ko)

tY -+ X.
otY, k

P3 = -A. MQ L -+ L-F ~z -l~

P4 = - t q 4 I 4(% f U)

(B- 2 3)

(B-24)

-r (B-25)

(B-26)

(B-27)

(B-28)

(B-29)

(i2~- ,~ i: ex) _ ~ 4 ( SStth( - -Y)

LI Q rF L- &Isc

T r a .4.

Lj )XN Xt(- & ) 5Z - Y-RF (W*+ u)

( >to- 1)-Sl ( I'-+ U) t~



' ^t 2L~~ i =~ H~~~'~ (s C \ )(B- 30)

~( G ) t 3Z a) ( ) ~(B- 3 1)

·
A -z Z2 L (-Q)+CQF (LA .2) F(32)

( B- 3 2 )

t-2o08) s 2. , 2 LFuP=
Pr a L. 2 42. C) C 5to (B-34)

(12 2i SIF 4 +k. 2L Ji

Ps = a [( 3^ Q(@) t +(c - a§4tod (B-35 )

X go 4Scow8) ( B- 3 6 )
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(B-37)

p _ [ §C4. wt>eU N + (c - o) U*+ 3 4ot e CiF2 3 &I 

(B-38)

-~,k-Ž~s ~(C O ¥ (aF•ri a )
4~~~~~~~0 

48~~ ?F ,J~a ~rt )(B-39)

(B- 4 1)

- f 4(s~~ -, ·1 
4 

-' 

Y~~~~b4 @)X 1 b ~~~~~~~~~~~(B- 41)

(B-42)

JC49if.
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(B-43)

(B-47)

( )i~\J ( it;12 N tz~t~tLB)

(B- 44)

k §2s ) (1kFI} e ) (B-45)

( 52; j =9 (t+Re il . (B- 4 7)

( 8= t~~~~~~~~~~e)( j ~~~~~~~(B- 48)
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- 2( °b)[(Jte ,) §tt -(sk--) 5$ jjE3> - 2 tt@

+ 4~ -

4- |( F(B-50)1 04-i~ } (z>54},i2X

Ra- -(3 C-2 '

I(ItFtio3z 352)+F)6o3 3t) (@ )2g
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A~~~~, tjR +Fp +{3zt +)t ar~l:2
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-p =a I- A3 1 10 4

-3 -vQ z (-e +e). 3 } -a;t Lu+" Iep(-4F2N4s21qn

_ r, i st A - Qa! %f) - 1 ir- (PO- " )E [-C , 0 R:)t 2s~' 44 (B-51)

_- ( (, -t) + 2. ,4- Q .(If)t4 4

0 = t CF%(C-- 3FL)( A+ ZZ

- -8-c) L 3EUXF -5 tsF - f t 

-51F1 (4 [\5Wt 1l4

+[2St~,^4+ZSZT 1 I_5F3)Z
p |t SZE 5s ¢!toklF E312t~tt~~ 

*-A 4tt- 2- ' -2 I. N,- + t(pQa) I455zc

I A32*+ , -45 * rt5123

(B-52)

(B-53)

3 Q 3 °N '3 (-at ) 3 41 t3

Ft t .3 (§-* l ) B)· +$, E .'1 . 5 t5+
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A; = 8 t-3 -~i5 38N5+c38 IL; t 3 a~~~~~- pas- .

+ (-zBltio 4t3ptz + 3+, Po 
(B-54)

&- (4 fr)( - -

-F96 [42S (-2W*+ >ot4- +ens) n~f24(B-55)

(B-56)

(B-57)

8.~L -t L .



-61-

_ rSF~t~tenF)5w,-A(, o,-, g(.t JF) A.- p 

- s6= t C.b23- 'AS~l C'(2 FO-S);(I+JE q4-(1-a *+

t I 4-.q (-F) (iFji lU (B-58)

tpza _ ,^r>_ 3Eo; -D ) W~b -( 5>+ Z t 5 50t)52g - 4 FZGYS0ZG (B-59)

1,s c- si(E3)L5 t (-6 3> etcS- 3 f 0 \Z4 -'C$

.(B-60)

'P'I -3t~t26t(C + v)-

?ia U ~ X . )(B- 61)

(B-62)

l Y gS- F " (B-63)

4 | _ S PI + PZ (B- 64)

, - _- (PJ- ? )/I (B-65)

("-(ffej- , (B-66)

(B-67)


